

Manual do usuário DTN-300 Contato Seco

ENABLING TECHNOLOGY

Khomp - Todos os direitos reservados

Índice

1. Introdução	página 3
1.1. O que é sensor analógico NB-IoT DTN-300?	página 3
1.2. Recursos	página 3
1.3. Especificações	página 4
1.4. Modo de suspensão e modo de trabalho	página 5
1.5. LEDs e botões	página 6
1.6. Conexões internas	página 7
1.7. Dimensões	página 8
1.8. Instalar o SIM card	página 10
1.9. Chave de ativação	página 11
2. Configuração do DTN-300	página 13
2.1. Configuração geral do DTN-300 via app Konfig	página 13
2.2. Configurações Específicas para o DTN-300 via app Konfig	página 14
2.2. Conectando-se a Rede NB-IoT	página 15
3. Protocolo de Envio e Formato de Dados	página 16
3.1. Formato Json	página 17
3.2. Formato HEX	página 18
4. Configurações específicas via comandos AT	página 19
4.1. Alarme por interrupção de contato	página 19
4.2. Principais comandos AT	página 20
4.3. Comandos MQTT	página 22
5. Configurar via downlink	página 23
5.1. Operação do sistema	página 23
5.1.1. Comandos via downlink	página 23
5.1.2. Intervalo de uplink	página 23
5.1.3. Configurar interrupção por contato	página 23
6. Obter acesso à documentação adicional	página 24

1. Introdução

1.1. O que é sensor analógico NB-IoT DTN-300 Contato Seco?

O DTN-300 Contato Seco faz parte da linha DTN de endpoints da Khomp. É um sensor projetado para aplicações em Internet das Coisas (IoT). Pode ter até três sensores de contato magnético dedicados para monitoramento de abertura e fechamento de portas (entre outros), enviando os dados coletados via rede mobile (NB-IoT).

Com tecnologia NB-IoT, o DTN-300 Contato Seco oferece suporte para vários métodos de uplink, incluindo MQTT, MQTTs, UDP e TCP, adaptando-se a diferentes necessidades de aplicação e servidores IoT. A tecnologia sem fio utilizada no DTN-300 Contato Seco permite que o dispositivo envie dados e atinja distâncias extremamente longas (com baixas taxas de transmissão). O sistema garante a comunicação de longo alcance com alta imunidade a interferências, enquanto minimiza o consumo de energia.

O DTN-300 Contato Seco também possui um recurso que envia um pacote de uplink ao broker sempre que o sensor é acionado. Além disso, o sistema conta com a função de armazenamento de dados (datalog), permitindo salvar as informações (mesmo quando a rede NB-IoT está fora do ar) e enviando-as assim que a conectividade estiver operacional.

Para simplificar a configuração, o DTN-300 Contato Seco oferece suporte ao Bluetooth Low Energy (BLE), permitindo que seja configurado com comandos AT via BLE por meio de um aplicativo celular.

1.2. Recursos

- Leitura de temperaturas de -55 °C a +125 °C
- Precisão na leitura de ±0,5 °C: -10 °C a +85 °C
- Comprimento do cabo: 3 m
- Uplink via MQTT, TCP ou UDP
- Múltiplas amostragens em único uplink
- Downlink para alterar a configuração
- Suporte para configuração remota via BLE
- Transmissão periódica
- Slot para cartão Nano SIM NB-IoT
- Bateria de 8500 mAh Li/SOCI2
- Grau de proteção waterproof IP65

1.3. Especificações

Características comuns de DC

- Tensão de alimentação: 2,5–3,6 V.
- Temperatura operacional: -40 °C até +85 °C

Interface I/O

- Saída da bateria (2,6-3,6 v depende da bateria)
- Saída controlável de +5 v
- 3 pinos de interrupção ou entrada/saída digital
- 3 interfaces de um fio
- 1 interface UART
- 1 interface I2C

Especificações NB-loT

- B1 @H-FDD: 2100 MHz
- B2 @H-FDD: 1900 MHz
- B3 @H-FDD: 1800 MHz
- B4 @H-FDD: 2100 MHz
- B5 @H-FDD: 860 MHz
- B8 @H-FDD: 900 MHz
- B12 @H-FDD: 720 MHz
- B13 @H-FDD: 740 MHz
- B17 @H-FDD: 730 MHz
- B18 @H-FDD: 870 MHz
- B19 @H-FDD: 870 MHz
- B20 @H-FDD: 790 MHz
- B25 @H-FDD: 1900 MHz
- B28 @H-FDD: 750 MHz
- B66 @H-FDD: 2000 MHz
- B70 @H-FDD: 2000 MHz
- B85 @H-FDD: 700 MHz

Bateria

- Bateria Li/SOCI2 não recarregável.
- Capacidade: 8500 mAh.
- Autodescarga: <1% / Ano a 25 °C.
- Corrente máxima contínua: 130 mA.
- Corrente máxima de reforço: 2 A, 1 segundo.

Consumo de energia

- Modo de suspensão: 10 μA @ 3,3 V.
- Modo de transmissão NB-IOT: 350 mA @ 3,3 V.

Sensor magnético

- Dimensões do sensor: 45x94x12 mm (LxPxH).
- Adesivo de 1 mm, fita dupla face acrílica VHB 3M.
- Temperatura de operação: De -60 °C a 60 °C.
- Comprimento do cabo: 3 m.
- Umidade de operação: 0-90% (não condensado).
- Acionamento em superfícies não metálicas 18 mm (tolerância ±10%).

1.4. Modo de suspensão e modo de trabalho

- **Modo de suspensão profunda**: Quando o equipamento não tem sensores ativados, ele desabilita a NB-IoT. Este modo é usado na etapa de armazenamento e envio (ativa a rede NB-IoT somente quando é necessário, para economizar bateria).
- Modo de trabalho: Neste modo, o equipamento funciona como Sensor NB-loT, para ingressar na rede e enviar dados de suas entradas para o servidor. Entre cada amostragem, transmissão ou recepção periódica, o sensor está no modo IDLE. No modo IDLE, o sensor tem o mesmo consumo de energia que no modo Deep Sleep.

1.5. LEDs e botões

-	Antena, acoplável
	19 7 9
⊙ ←	Botão frontal ACT
	LED indicador
	Válvula de equilíbrio da pressão

Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	Se o sensor já estiver conectado à rede NB-IoT, o sensor enviará um pacote de uplink, o LED pisca azul uma vez. Enquanto isso, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o dispositivo.
Pressionar o botão ACT por mais de 3 segundos	Dispositivo ativado	O LED pisca verde rapidamente 5 vezes, o dispositivo entrará no modo OTA por 3 segundos. Em seguida, ENTRA na rede NB-IoT. O LED acende verde continuamente por 5 segundos após entrar na rede. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o equipamento, independentemente de o dispositivo ingressar ou não na rede NB-IoT.
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED ficará aceso na cor vermelho por 5 segundos. Significa que o DTN-300 está no modo de suspensão profunda.

1.6. Conexões internas

Legenda: Interior do sensor com indicações dos conectores internos.

Interface	Funções	
PA4 Pino 3	Entrada de dados (Data)	
PA8 Pino 9	Entrada de dados (Data)	
PB15 Pino 10	Entrada de dados (Data)	
GND Pino 11	GND	
LED	LED	
POWER JUMPER	Jumper para ligar o dispositivo	
RESET	Botão para reiniciar o dispositivo	

Legenda: Dimensões na parte frontal do DTN-300.

Legenda: Dimensões na parte lateral do DTN-300.

Legenda: Dimensões na parte traseira do DTN-300.

1.8. Instalar o SIM card

Aplique as indicações observada a seguir para instalar o SIm card no DTN-300.

1. Desligue o DTN-300 para adicionar o SIM card corretamente.

2. Abra o DTN-300 e desparafuse o modem mobile. Remova-o da placa principal, puxando o modem do slot.

3. Na parte de trás do modem, insira o SIM card como indica a imagem a seguir.

4. Após ter adicionado o SIM card no modem, instale o modem na placa principal do DTN-300 e prenda o modem com o parafuso de fixação.

1.9. Chave de ativação

O dispositivo possui um conjunto único de chaves (OTAA keys) para registro no servidor de rede NB-IoT.

Para ingressar o equipamento na rede é preciso apenas inserir as chaves no servidor NB-IoT e após feito isso, ligar o dispositivo para que ele inicie o processo de JOIN (adesão à rede) automaticamente.

As chaves de ativação OTAA estão localizadas em uma etiqueta, dentro da caixa do produto. Nesta etiqueta também se encontram algumas outras chaves privadas do dispositivo, utilizada para outros processos.

- Guarde bem as chaves de cada equipamento.
- Somente as chaves podem adicionar o endpoint na rede NB-IoT.
- As chaves também são necessárias para alterar as configurações do dispositivo.

Abra a caixa e observa a etiqueta no lado interno da tampa (na embalagem). Um exemplo de onde localizar a etiqueta com as chaves do DTL-300 é observado a seguir:

A seguir, é observada uma imagem com um exemplo de como deve ser a etiqueta:

Nota Alguns números foram ocultados por questões de privacidade e segurança.

2. Configuração do DTN-300

O DTN-300 suporta a conexão via BLE (Bluetooth) com outros dispositivos. Com isso, a Khomp disponibiliza o aplicativo **KONFIG** para realizar a configuração dos parâmetros do endpoint. Os endpoints da linha DTN são configurados através de comandos AT. Portanto, aceitam

comandos do tipo:

AT + comando = valor_do_parâmetro

Para facilitar aos usuários que possuem endpoints da linha DTN, o aplicativo Konfig possui uma série de botões predefinidos onde visam economizar tempo na configuração e deixá-la mais dinâmica e simples. O aplicativo está disponível para as plataformas Android e iOS e pode ser baixado através dos links:

- Android: https://play.google.com/store/apps/details?id=com.khomp.konfig&pli=1
- iOS: https://apps.apple.com/us/app/konfig/id6739005051

2.1. Configuração geral do DTN-300 via app Konfig

Os endpoints da linha DTN possuem a mesma base de configuração inicial. Essas configurações podem facilmente serem feitas através do aplicativo Konfig, com os botões predefinidos.

Disponibilizamos um manual a parte para este tipo de configuração, onde será encontrado a maneira correta de usar os comandos e exemplos para auxiliar no processo. A documentação para a configuração geral pode ser obtida através do endereço observado a seguir:

https://docs.google.com/presentation/d/1WNFs9TNmAUDxLEtKSFsrdZ6zkKZDOyjAikiBBoTqcol/edit#slide=id.g2d6c81bd0a1_1_0

2.2. Configurações Específicas para o DTN-300 via app Konfig

Como informado anteriormente, a configuração dos parâmetros nos endpoints da linha DTN é feita através de comandos AT.

O aplicativo Konfig, possui um botão onde o usuário pode informar os comandos AT de configurações específicas e também os seus valores.

A imagem a seguir possui indicações para enviar comandos AT.

-	Con	figuraçã	o AT	-
Cor sele Sen	nplete o vali cionado. opre apaque	or dos com	andos do bo erior antes d	tão
inse	nir um coma	ando difere	nte.	
[364	18]Signal S 48]Signal S	trength:99 trength:99		
[396	78 Signal S	trength:99		
413	08]Signal S	trength:99		
[445	68]Signal S	trength:99		
[461	98]Signal S	trength:99		
[402	27JPasswo	ra Correct		
_				_
			8	2
Role	oara baixo*			
\square	Senha C	omandos a	vançados	
	Exib	ir configura	ções	
_			_	

Legenda:

- 1. Botão Senha | Comandos Avançados: Botão para habilitar o local de envio dos comandos específicos.
- 2. Campo de input: Local para ser inserido o comando AT.
- 3. Botão Enviar: Botão para enviar o comando AT.

Portanto, sempre que for enviado um comando específico para o DTN-300, deverão ser aplicados os procedimentos descritos a seguir:

- a. Clicar no botão "Senhas | Comandos avançados".
- **b**. Inserir o comando AT corretamente no "Campo de input".
- c. Clicar no botão "Enviar".

2.3. Conectando-se a Rede NB-IoT

Após inserir o SIM card, como mostra o subtítulo "Instalando o SIM card", pressione o botão frontal do DTN-300 por mais de 5 segundos (até que o LED comece a piscar). O sistema abre o canal BLE por 60 segundos (para configuração), como vimos na etapa anterior.

Em seguida, utilize o botão "Inserir APN" para configurar a APN do SIM card no dispositivo.

Ou use o campo de comandos avançados e envie o comando: AT+APN=<APN da operadora>

Exemplo: AT+APN=zap.vivo.com.br

Para otimizar o tempo de conexão, é importante selecionar a banda de frequência adequada, considerando fatores como a região, operadora, rede disponível e a distância. Utilize o botão Filtro de Banda (mostrado no subtítulo "Configuração via BLE") para configurar a banda ou use o campo de comandos avançados e enviar o comando:

T+QBAND=<número de bandas>,<bandas separadas por vírgula>

Exemplo: AT+QBAND=2,3,28 (configura o dispositivo para usar a banda 3 e a 28).

3. Protocolo de Envio e Formato de Dados

Para atender aos diferentes servidores, o DTN-300 oferece suporte para vários formatos de carga útil (payload) e protocolo de envío. Os formatos de carga útil são:

FORMATO 5 - JSON (Tipo = 5) FORMATO 0 - HEX (Tipo = 0)

E o usuário pode usar os seguintes protocolos de envio:

O protocolo de envio e o formato da carga útil devem ser configurados através do botão Protocolo de Transporte e Formato ou do comando avançado AT+PRO. A estrutura da configuração através do botão é a mesma do comando AT+PRO, sendo ela:

\rightarrow AT+PRO=2,0	// Conexão UDP e payload HEX // Conexão UDP e payload JSON
\rightarrow AT+PRO=3,0	// Conexão MQTT e payload HEX
\rightarrow AT+PRO=3,5	// Conexão MQTT e payload JSON
\rightarrow AT+PRO=4,0	// Conexão TCP e payload HEX
\rightarrow AT+PRO=4,5	// Conexão TCP e payload JSON

No aplicativo, as mesmas configurações mostradas anteriormente, podem ser aplicadas da seguinte forma:

[60718]Opened the MQTT client network successfully [64276]Successfully connected to the server [67870]Upload data successfully [71409]Subscribe to topic successfully [74954[Close the port successfully [75993]Send complete
3,5 😵 2
Role para baixo para ver mais comandos Protocolo de transporte e formato
Endereço e porta do servidor MQTT Fechar

O aplicativo é utilizado apenas para configurar o dispositivo.

3.1. Formato Json

O DTN-300 suporta o formato JSON (JavaScript Object Notation), uma estrutura de dados leve, ideal para armazenar e transmitir informações de forma organizada e legível.

Utilizando pares "chave: valor" e listas ordenadas, o formato JSON facilita o intercâmbio de dados entre sistemas e é amplamente usado em APIs e aplicações Web pela sua simplicidade e compatibilidade com várias linguagens de programação.

O formato JSON Geral é observado a seguir:

"IMEI":"863663062768693", "Model":"SN50V3-NB", "mod":8, "battery":3.57 "signal":16, "adc2":1, "DS18B20_Temp":-409.5, "interrupt":0,"interrupt_level":0, "interrupt_pa4":0, "interrupt_level_pa4":0, "interrupt_pa8":0, "interrupt_level_pa8":0, "1":[0,-409.5,"2000/01/01 15:59:16"]," 2":[0,-409.5,"2000/01/01 15:44:16"]," 3":[0,-409.5,"2000/01/01 15:29:16"]," 4":[0,-409.5,"2000/01/01 15:14:16"]," 5":[0,-409.5,"2000/01/01 14:59:16"]," 6":[0,-409.5,"2000/01/01 14:44:16"]," 7":[0,-409.5,"2000/01/01 14:29:16"]," 8":[0,-409.5,"2000/01/01 14:14:16"]}

3.2. Formato HEX

No formato HEX, os dados são codificados em hexadecimal, representando cada byte em dois caracteres hexadecimais. Esse formato é eficiente para transmissões compactas de dados, sendo adequado para sistemas com restrições de largura de banda e processamento.Os oitos primeiros Bytes representam o IMEI do equipamento. Após isso cada par de caracteres representa um valor de byte em formato binário simplificado, facilitando a transmissão e o armazenamento com menor ocupação de espaço comparado ao formato de texto.

O formato HEX é indicado a seguir.

f863663062768693 047c 0de7 10 00 00 Ffff 00 00 00 00 00 00 386d4472

f863663062768693	047c	0de7	10	08	Ffff
f+IMEI	Versão	Bateria	Sinal	Mod	DS18B20
8 Bytes	2 Bytes	2 Bytes	1 Byte	1 Byte	1 Byte

00	00	00	00	00	00	386d4472
Alarme(PB15)	Estado PB15	Estado PA4	Interrupção PA4	Interrupção PA8	Estado PA8	Timestamp
1 Byte	1 Bytes	1 Bytes	1 Bytes	1 Bytes	1 Bytes	4 Bytes

4. Configurações específicas via comandos AT

4.1. Alarme por interrupção de contato

Define que a cada abertura ou fechamento de porta seja enviado um uplink ao servidor. O usuário pode usar os comandos observados a seguir, para definir os limites do alarme:

```
AT+INTMOD=1:0,2:0,3:0
```

```
→ Define se o uplink será enviado em caso de abertura, fechamento ou ambos.
```

Comando	Função	Resposta
AT+INTMOD?	Define ou exibe a forma de interrupção	1:0,2:0,3:0 OK
AT+INTMOD=a,b,c	a) configura PB15 b) configura PA4 c) configura PA8	ОК
4T+INTMOD=111 2:3 3:2	Valores aceitos pelo comando: 0:Input 1: Uplink será enviado sempre que a porta for aberta ou fechada. 2: Uplink será enviado cada vez que a porta abrir. 3:Uplink será enviado toda vez que a porta fechar.	ОК
ATTINTNIOD-1.1,2.3,3.2	Neste comando, configuramos o seguinte comportamento para os uplinks: 1: Envia uplink para qualquer ação da porta (abertura ou fechamento). 3: Envia uplink apenas quando a porta é fechada. 2: Envia uplink apenas quando a porta é aberta.	1:1,2:3,3:2 OK

4.2. Principais comandos AT

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Exibir as configurações gerais.	AT+CFG	Será exibido uma lista com as configurações do endpoint, por exemplo: AT+MODEL=S31-NB-GE,v1.2.4 AT+CFGMOD=1 AT+DEUI=863663062782884 AT+PWORD=****** AT+SERVADDR=NULL AT+SERVADDR=NULL AT+CLIENT=863663062782884 AT+UNAME=NULL AT+UNAME=NULL AT+PWD=NULL AT+PUBTOPIC=NULL AT+PUBTOPIC=NULL AT+SUBTOPIC=NULL AT+TDC=7200 AT+INTMOD=0 AT+APN=If.br AT+PRO=3,5 AT+SHTEMP=10,24 AT+SHHUM=0,0 OK
Configurar ou exibir o endereço do servidor.	AT+SERVADDR	ОК
Reinicia o dispositivo.	AT+ATZ	S31-NB-GE NB-IoT Temperature & Humidity Sensor Manual image Version: XXX NB-IoT Stack : D-BC660K-003 {}

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Obter o intervalo atual de uplink. Observação: O intervalo é dado em milisegundos, ou seja, 10000 = 10000 / 1000 = 10 s.	AT+TDC=?	30000 ОК
Define o intervalo de uplink do endpoint. Observação 1: O intervalo deverá ser definido em milissegundos. Observação 2: O menor valor possível é 6000 = 6s.	AT+TDC=60000 Observação: 60000 = 60 s	ок
Exibe a configuração atual do modo de interrupção.	AT+INTMOD=?	1:0,02:0,3:0 OK
configura o modo de interrupção. Valores aceitos pelo comando: 0:Input 1: Uplink será enviado sempre que a porta for aberta ou fechada. 2: Uplink será enviado cada vez que a porta abrir. 3:Uplink será enviado toda vez que a porta fechar.	AT+INTMOD= a:0-3,b:0-3,c:0-3 a=PB15 b=PA4 c=PA8	ок

4.3. Comandos MQTT

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Configura ou exibe o nome em que o dispositivo aparecerá no broker.	AT+CLIENT	ок
Configura ou exibe o usuário que irá acessar o broker.	AT+UNAME	ок
Configura ou exibe a senha que o dispositivo irá acessar o servidor.	AT+PWD	ок
Configura ou exibe o tópico de publicação MQTT.	AT+PUBTOPIC	ок
Configura ou exibe o inscrição MQTT.	AT+SUBTOPIC	ОК

5. Configurar via downlink

5.1. Operação do sistema

O DTL-300 permite controlar e ajustar o dispositivo de forma direta e eficiente utilizando comandos especiais. Esta abordagem oferece uma maneira robusta de acessar funcionalidades essenciais do dispositivo, como configurações de intervalo de uplink, definir a forma em que os contatos magnéticos irão operar.

5.1.1. Comandos via downlink

Os endpoints da linha DTL da Khomp aceitam configurações através de comandos via downlink. Nesta seção, apresenta-se exemplos de comandos de configuração, especificando sua estrutura e as portas que devem ser utilizadas.

Para envio das mensagens de downlink, será preciso dos seguintes dados:

- Porta: A porta de recebimento de downlink é a porta 1
- Comando: Um valor hexadecimal tabelado.

A seguir, em Comandos downlink, é possível observar a tabela indicando os comandos e seus respectivos valores hexadecimais para envio via downlink.

5.1.2. Intervalo de uplink

Define o intervalo de tempo de envio da leitura do sensor de temperatura. São 4 bytes de dados, sendo o primeiro byte o código do comando(0x01), e os 3 bytes restantes o tempo em segundos

Comando	Função
01 0004B0	Define o intervalo para 1200 segundos (20 minutos) Padrão de fábrica
01 001C20	Define o intervalo para 7200 segundos (2 horas)

5.1.3. Configurar interrupção por contato

O comportamento dos uplinks será definido conforme a configuração dos contatos magnéticos. O prefixo deste comando é 0x06 acompanhado de 3 bytes, sendo cada byte responsável por um contato magnético.

Comando	Função
06 010302	Define a interrupção dos contatos como 1 :1, 2 :3, 3 :2 onde 1 =PB15, 2 =PA4 e 3 =PA8 define que: Neste comando, configuramos o seguinte comportamento para os contatos: 1: Envia uplink para qualquer ação da porta (abertura ou fechamento). 3: Envia uplink apenas quando a porta é fechada 2: Envia uplink apenas quando a porta é aberta.

6. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

1. No site da Khomp, acesse o menu "Suporte Técnico" \rightarrow "Área restrita".

- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- 4. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.

5. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.

6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- 1. Acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- **3**. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com, pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento não tem direito a proteção contra interferência prejudicial e não pode causar interferências em sistemas devidamente autorizados.
- Este equipamento não é apropriado para uso em ambientes domésticos, pois poderá causar interferências eletromagnéticas que obrigam o usuário a tomar medidas para minimizar estas interferências.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

Rua Joe Collaço, 253 - Florianópolis, SC +55 (48) 3722.2930 +55 (48) 999825358 **WhatsApp** suporte.iot@khomp.com