

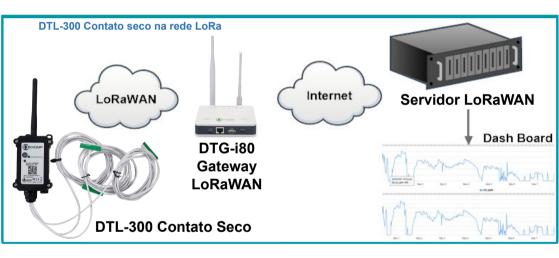
Manual do usuário DTL-300 Contato Seco

ENABLING TECHNOLOGY

Índice

1. Introdução	página 3
1.1. O que é o sensor abertura de porta?	página 3
1.2. Recursos	página 3
1.3. Especificações técnicas	página 4
1.4. Modo de suspensão e modo de trabalho	página 4
1.5. LEDs e botões	página 5
1.6. Conexões internas	página 6
1.7. Dimensões	página 7
2. Conecta na rede LoRa	página 9
2.1. Como funciona	página 9
2.2. Conexão com o servidor LoRaWAN (OTAA)	página 9
2.2.1. Chaves de ativação	página 9
2.2.2. Acessando a Interface Web do servidor LoRaWAN	página 12
2.2.3. Conferindo o status do gateway	página 12
2.2.4. Adicionando um perfil de usuário	página 13
2.2.5. Adicionando uma aplicação	página 15
2.2.6. Adicionar o dispositivo	página 17
2.3. Conteúdo do uplink (payload)	página 19
2.3.1. Valor dos sensores, FPORT=2	página 19
2.3.2. Status do dispositivo, FPORT=5	página 20
2.3.3. Decodificar o conteúdo do Uplink	página 20
3. Configurações	página 21
3.1. Métodos de configuração	página 21
3.1.1. Comando via Downlink	página 21
3.1.2. Intervalo de uplink	página 21
3.1.3. Obter pacote de status	página 21
4. Obter acesso à documentação adicional	página 22

1. Introdução


1.1. O que é o sensor abertura de porta?

O sensor de contato seco faz parte da linha DTL-300, e nessa versão ele é um contato seco projetado para aplicações em Internet das Coisas (IoT). Ele possui três sensores de contato magnético dedicadas para monitoramento de abertura e fechamento de portas. Este sensor envia os dados coletados através do protocolo sem fio LoRaWAN, proporcionando uma solução eficiente e de longo alcance para o monitoramento de abertura e fechamento de portas em ambientes variados.

A tecnologia sem fio LoRa usada no DTL-300 permite que o dispositivo envíe dados e alcance distâncias extremamente longas, com baixas taxas de dados. O endpoint fornece comunicação de espectro espalhado de alcance ultra longo e alta imunidade a interferências, ao mesmo tempo que minimiza o consumo de corrente.

O sistema é alimentado por bateria Li-SOCI2 de 8500 mAh e foi projetado para uso de longo prazo (por até 5 anos).

Cada DTL-300 é pré-carregado com um conjunto de chaves exclusivas para registros LoRaWAN. Com as chaves exclusivas registradas no servidor LoRaWAN local, o endpoint se conectará automaticamente ao ser ligado.

1.2. Recursos

- LoRaWAN 1.0.3 Classe A
- · Consumo de energia ultra baixo
- 3 x sensores de contato magnético
- Monitoramento do nível da bateria
- Banda: AU915
- Uplink ativado periodicamente
- Bateria de 8500mAh para uso prolongado

1.3. Especificações técnicas

Hardware

- MCU: ARM de 48 MHz.
- Flash: 256 KB.
- RAM: 64 KB.

Características comuns de DC:

- Tensão de alimentação: 2.5-3.6 V.
- Temperatura operacional: -40 °C até +85 °C

Especificações LoRa

- Faixa de frequência, banda 1 (HF): 862-1020 MHz
- Saída de RF constante máxima de +22 dBm vs.
- Sensibilidade RX: até -139 dBm.
- Excelente imunidade bloqueadora.

Bateria

- Bateria Li/SOCI2 n\u00e3o recarreg\u00e1vel.
- · Capacidade: 8500 mAh.
- Autodescarga: <1% / Ano a 25 °C.
- Corrente máxima contínua: 130 mA.
- Corrente máxima de impulso: 2 A, 1 segundo.

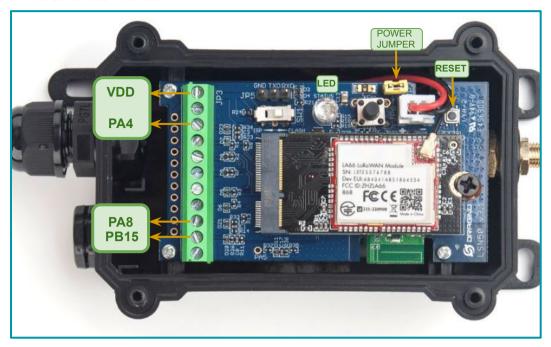
Consumo de energia

- Modo de repouso: 5 μA à 3,3 V.
- Modo de transmissão LoRa: 125 mA à 20 dBm, 82 mA à 14 dBm.

Garantias e certificações

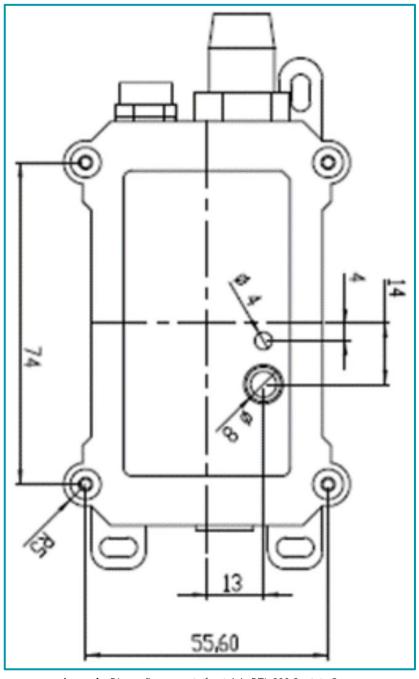
- Garantia total (legal + garantia Khomp): 1 ano
 - Garantia legal: 90 dias
 - Garantia Khomp: 9 meses
- Certificação Anatel
- Indústria certificada ISO 9001

1.4. Modo de suspensão e modo de trabalho


- Modo de suspensão profunda: Neste modo, o equipamento possui o funcionamento normal de um dispositivo LoRa. Ele irá ingressar na rede LoRa e enviará dados ao gateway. Periodicamente, entre cada amostragem, o dispositivo entrará no modo IDLE. No modo IDLE, ele terá o mesmo consumo de energia que no modo de suspensão.
- Modo de trabalho: Quando o equipamento não possui conexão LoRaWAN, ele entra no modo suspensão. Este modo é utilizado para economizar bateria e otimizar a vida útil do equipamento.

1.5. LEDs e botões

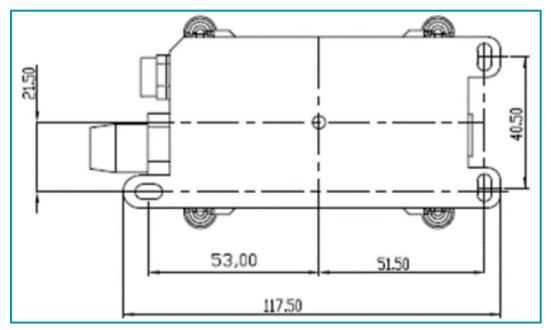
Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	Se o sensor já estiver conectado à rede LoRa, o sensor enviará um pacote de uplink, o LED pisca azul uma vez. Enquanto isso, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o dispositivo.
Pressionar o botão ACT por mais de 3 segundos	Dispositivo ativado	O LED pisca verde rapidamente 5 vezes, o dispositivo entrará no modo OTA por 3 segundos. Em seguida, ENTRA na rede LoRa. O LED acende verde continuamente por 5 segundos após entrar na rede. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o equipamento, independentemente de o dispositivo ingressar ou não na rede LoRa.
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED ficará aceso na cor vermelho por 5 segundos. Significa que o DTL-300 está no modo de suspensão profunda.


1.6. Conexões internas

Legenda: Interior do endpoint com indicações dos conectores internos.

Interface	Funções		
VDD	Saída controlável de 3,3 V, (nível de tensão igual ao da bateria, 2.6–3.6 V), pino 1		
PA8	Leitor do sensor magnético 1, pino 9		
PA4*	Leitor do sensor magnético 2, pino 3		
PB15*	Leitor do sensor magnético 3, pino 10		
LED	LED		
POWER JUMPER	Jumper para ligar o dispositivo		
RESET	Botão para reiniciar o dispositivo		

1.7. Dimensões



Legenda: Dimensões na parte frontal do DTL-300 Contato Seco.

7

Legenda: Dimensões na parte lateral do DTL-300 Contato Seco.

Legenda: Dimensões na parte traseira do DTL-300 Contato Seco.

2. Conectar na rede LoRa

21 Como funciona

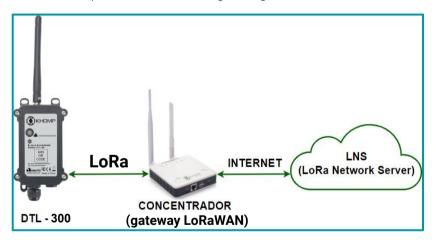
Por padrão, o DTL-300 Contato Seco é configurado no modo LoRaWAN OTAA, classe A. O dispositivo possui um conjunto específico de chaves (OTAA keys). Essas chaves são utilizadas para ingressar o DTL-300 na rede LoRa.

Após as chaves serem inseridas no servidor, basta ligar o equipamento para que ele inicie automaticamente o processo de JOIN (adesão na rede LoRa).

As chaves OTAA são únicas para cada dispositivo. Elas são encontradas em uma etiqueta, dentro da caixa do produto e devem ser armazenadas de forma responsável. As chaves não podem ser compartilhadas entre diferentes dispositivos, ou seja, você não conseguirá adicionar o seu equipamento na rede LoRa utilizando as chaves de outro dispositivo.

O processo para adicionar o DTL-300 Contato Seco na rede LoRa foi detalhado a seguir.

2.2. Conexão com o servidor LoRaWAN (OTAA)


A seguir está um exemplo de como ingressar o DTL-300 na rede LoRa. Em nosso exemplo, vamos utilizar o ChirpStack V4 como o network server.

Nota

Para este exemplo, vamos assumir que o gateway LoRa (concentrador) já possui registro no servidor de rede LoRa.

A estrutura de rede pode ser observada na imagem a seguir:

2.2.1. Chaves de ativação

O dispositivo possui um conjunto único de chaves (OTAA keys) para registro no servidor de rede LoRa.

Para ingressar o equipamento na rede é preciso apenas inserir as chaves no servidor LoRaWAN e após feito isso, ligar o dispositivo para que ele inicie o processo de JOIN (adesão à rede) automaticamente.

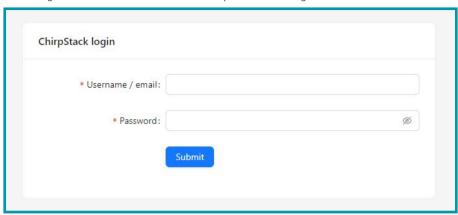
As chaves de ativação OTAA estão localizadas em uma etiqueta, dentro da caixa do produto. Nesta etiqueta também se encontram algumas outras chaves privadas do dispositivo, utilizada para outros processos.

- Guarde bem as chaves de cada equipamento.
- Somente as chaves podem adicionar o endpoint na rede LoRa.
- As chaves também são necessárias para alterar as configurações do dispositivo.

Abra a caixa e observa a etiqueta no lado interno da tampa (na embalagem).

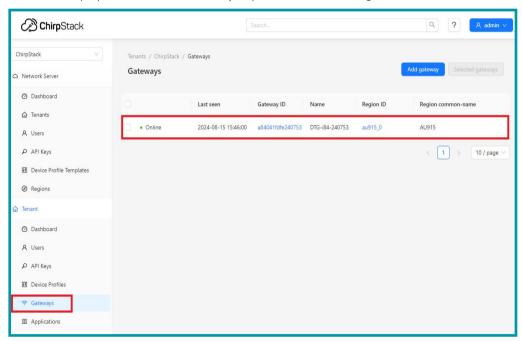
Um exemplo de onde localizar a etiqueta com as chaves do DTL-300 Contato Seco é observado a seguir:

Indicamos uma imagem de exemplo para a etiqueta, a seguir:


(i)

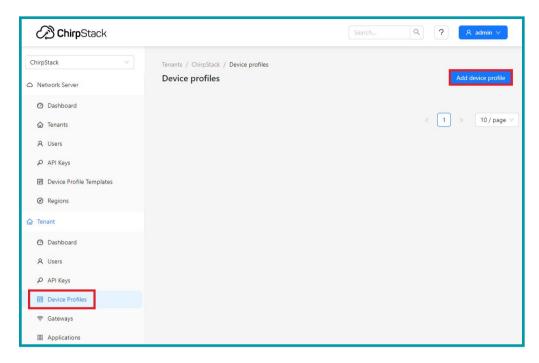
Nota

Alguns números foram ocultados por questões de privacidade e segurança.


2.2.2. Acessando a Interface Web do servidor LoRaWAN

Após localizar as chaves do DTL-300, acesse a Interface Web do Network Server (NS) ChirpStack em seu navegador e use as credenciais de acesso para realizar o login.

2.2.3. Conferindo o status do gateway


- No menu lateral, localize e clique na opção Gateways.
- Na seção de Gateways é possível verificar a lista com todos os concentradores que foram registrados no servidor. Verifique se o gateway utilizado para a comunicação está com o status "online" e verifique também a última vez em que teve uma troca de informações, no parâmetro "last sept"
- Um exemplo para verificar essas informações pode ser observado a seguir:

2.2.4. Adicionando um perfil de usuário

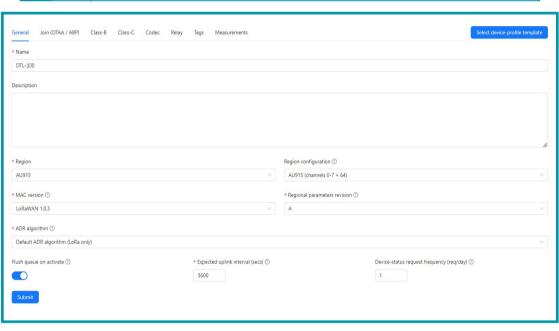
Após verificar que está tudo certo com o registro do gateway, adicione o perfil do dispositivo para ser utilizado no DTL-300:

- No menu lateral, localize e clique na opção Device Profiles ou perfil do dispositivo.
- Na seção de perfis, clique no botão Add device profile ou adicionar perfil do dispositivo.

Para adicionar um perfil do dispositivo, é obrigado configurar algumas informações:

- Name: Nome descritivo para o perfil do dispositivo.
- Region: Região geográfica onde o dispositivo opera. Define a banda de frequência que será usada.
 Para o Brasil, a opção AU915 é a faixa de frequência regulamentada pela ANATEL.
- MAC version: Versão do protocolo MAC (Medium Access Control) que o dispositivo utiliza. Esta informação é encontrada no manual do equipamento.
- Regional parameters version: Revisão dos parâmetros regionais suportados pelo dispositivo. Esta informação é encontrada no manual do equipamento.
- ADR algorithm: Algoritmo utilizado para Adaptive Data Rate (ADR).
- Expected uplink interval (secs): Intervalo de tempo esperado entre uplinks (transmissões de dados do dispositivo para a rede).

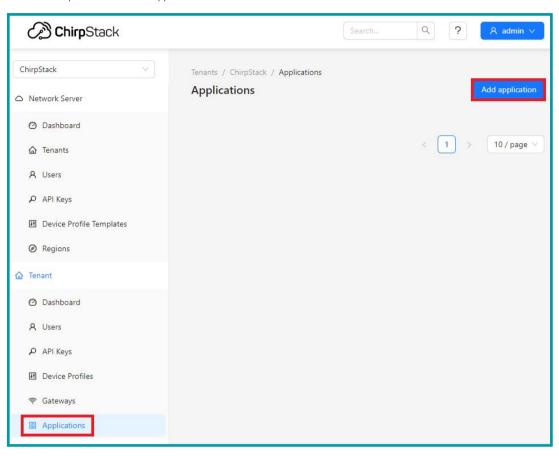
Nota


- Existem outras opções de configuração para o perfil do dispositivo (pode ser inserido um decoder para os dados, por exemplo).
- Essas outras configurações não são "obrigatórias" para a criação do perfil.
- A explicação de cada parâmetro pode ser encontrada na documentação oficial do ChirpStack.

Para o nosso exemplo, as informações serão preenchidas com:

- Name: DTL-300-Profile
- Region: AU915
- MAC version: LoRaWAN 1.0.3
- Regional parameters version: A
- ADR algorithm: Default ADR algorithm (LoRa only)
- Expected uplink interval (secs): 3600

As Informações de versão MAC e Parâmetros Regionais podem ser encontradas no manual do dispositivo. Para as demais configurações, utilize o padrão indicado.

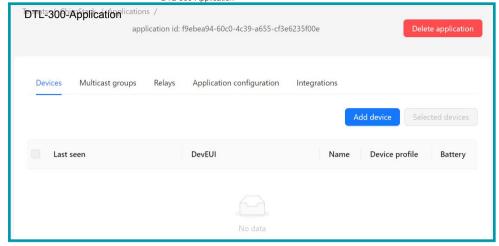


Após configurar o perfil do dispositivo, clique no botão "Submit".

2.2.5. Adicionando uma aplicação

Após adicionar um perfil do usuário, é necessário adicionar uma aplicação:

- No menu lateral, localize e clique na opção "Applications".
- Clique no botão "Add application".

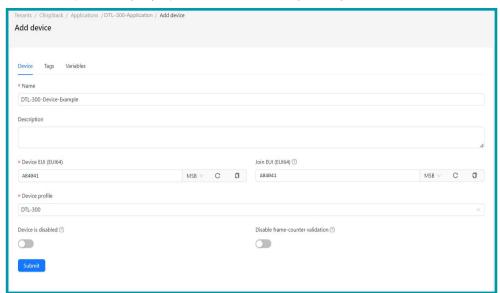

Na nova interface que será exibida, é necessário fornecer um nome para a aplicação. Após indicar o nome, clique em "Submit".

enants / ChirpStack / Applications / Add	
Add application	
* Name	
DTL-300-Application	
Description	
Submit	

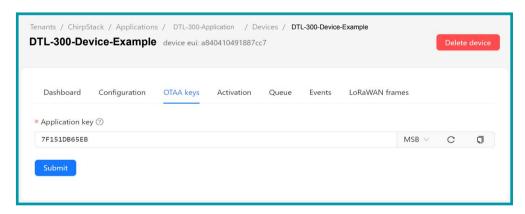
Após estes procedimentos , será exibida a interface da sua aplicação.

2.2.6. Adicionar o dispositivo

Com a aplicação criada, é preciso adicionar um dispositivo. Na interface da aplicação que acaba de ser criada, clique em "Add Device". DTL-300-Application


Será obrigado fornecer algumas informações para adicionar um dispositivo, são elas:

- Name: Nome descritivo e amigável para o dispositivo.
- Device EUI: Um identificador único de 64 bits (8 bytes) para o dispositivo. É um código hexadecimal que identifica exclusivamente cada dispositivo na rede LoRa.
- JOIN EUI: Também conhecido como AppEUI ou JoinEUI, é um identificador de 64 bits (8 bytes) usado para identificar a aplicação ou o serviço ao qual o dispositivo está tentando se conectar.
- Device Profile: Um conjunto de configurações que define o comportamento e as capacidades do dispositivo, como a frequência de transmissão, o tipo de mensagem e os parâmetros de comunicação. É o perfil do usuário que foi configurado anteriormente.


• Após configurar corretamente, clique em "Submit".

Um exemplo de configuração pode ser observado na imagem a seguir:

- Após clicar em submit, será necessário informar a "Application Key" do endpoint.
- A "App key" pode ser localizada na etiqueta interna da caixa do dispositivo, junto com as outras chaves do equipamento.
- Após inserir a "App Key", clique em "Submit" novamente.

Um exemplo de configuração pode ser observado a seguir:

- Feito esse procedimento, as chaves OTA para ativação do endpoint foram inseridas no servidor de rede.
- O equipamento irá automaticamente enviar a solicitação de adesão à rede (JOIN Request) assim que ele for ligado.

2.3. Conteúdo do uplink (payload)

2.3.1. Valor dos sensores. FPORT=2

O uplink, com 11 bytes, contém o status dos 3 sensores de contato magnético, indicando se o circuito está aberto ou fechado. Além disso também é enviado o nível da bateria do DTL-300.

Dados do sensor (FPORT=2)							
Tamanho (bytes)	2	2	2	1	1	1	2
Valor	Bateria	Reservado	Reservado	Contato 1 (PA8)	Contato 2 (PA4)	Contato 3 (PA15)	Reservado

Bateria: Indica a tensão atual da bateria com precisão de 3 casas.

Exemplo 1: 0x0B45 = 2885 mV **Exemplo 2**: 0x0B49 = 2889 mV

Contato 1 (PA8): Retorna o status da leitura da sonda de contato magnético, se está aberto ou fechado:

- **0** : Significa que está aberto.
- 1 : Significa que está fechado.

Contato 2 (PA4): Retorna o status da leitura da sonda de contato magnético, se está aberto ou fechado:

- 0 : Significa que está aberto.
- 1 : Significa que está fechado.

Contato 3 (PB15): Retorna o status da leitura da sonda de contato magnético, se está aberto ou fechado:

- **0** : Significa que está aberto.
- 1 : Significa que está fechado.

2.3.2. Status do dispositivo, FPORT=5

Esse é o Uplink de status do endpoint. Ele apresenta informações úteis como o modelo do sensor, Versão do firmware, banda de frequência utilizada, sub banda e o nível de tensão da bateria.

<u>(i)</u>	Nota	No padrão de fábrica, o DTL-300 envia o uplink de status a cada 12 horas.
------------	------	--

		Status	(FPORT=5)		
Tamanho (bytes)	1	2	1	1	2
Valor	Modelo do Sensor	Versão de firmware	Banda de frequência	SUB-banda	Nível da bateria

Modelo do Sensor: É um valor que representa o modelo. Para cada modelo de endpoint, terá um valor atribuído. Para o modelo DTL-300 Contato Seco, é atribuído o valor **0x1C**.

Versão de firmware: Indica a versão do firmware: 0x0100, significa versão v1.0.0

Banda de Frequência: Indica a banda de frequência. Para cada banda, existe um número associado. A banda usada em nosso equipamento no Brasil(AU915) corresponde ao valor 0x04.

0x04: AU915

SUB-banda: Indica a sub-banda utilizada. Para a banda AU915 (0x0 - 0x8).

Nível de bateria: Indica a tensão da bateria com precisão de 3 casas

Exemplo 1: 0x0B45 = 2885 mV **Exemplo 2**: 0x0B49 = 2889 mV

2.3.3. Decodificar o conteúdo do Uplink

A Khomp oferece decoders para diferentes servidores, de forma a facilitar a visualização dos dados enviados pelos nossos endpoints. Você pode verificar em nosso repositório no github os decoders de nossos dispositivos para diferentes servidores acessando o link a seguir.

Decodificador de payload DTL-300 Contato Seco:

https://github.com/support-khomp/iot-decoders/tree/main/Endpoints-Linha-DTL

3. Configurações

3.1. Métodos de configuração

O DTL-300 Contato Seco permite controlar e ajustar o dispositivo, de forma direta e eficiente, utilizando comandos especiais. Esta abordagem oferece uma maneira robusta de acessar funcionalidades essenciais do dispositivo, como configurações de intervalo de uplink, obter pacote de status, entre outros.

O equipamento suporta a configuração via downlink a partir de seu servidor LoRaWAN.

3.1.1. Comando via Downlink

Os endpoints da linha DTL da Khomp aceitam configurações através de comandos via downlink. Nesta seção, apresenta-se exemplos de comandos de configuração, especificando sua estrutura e as portas que devem ser utilizadas.

Para envio das mensagens de downlink, será preciso dos seguintes dados:

- Porta: A porta de recebimento de downlink é a porta 1
- Comando: Um valor hexadecimal tabelado.

Em Comandos downlink, é possível observar a tabela indicando os comandos e seus respectivos valores hexadecimais para envio via downlink.

3.1.2. Intervalo de uplink

Define o intervalo de tempo de envio da leitura do sensor de temperatura. São 4 bytes de dados, sendo o primeiro byte o código do comando(0x01), e os 3 bytes restantes o tempo em segundos.

Comando	Função
01 0004B0	Define o intervalo para 1200 segundos (20 minutos, padrão de fábrica)
01 001C20	Define o intervalo para 7200 segundos(2 horas)

3.1.3. Obter pacote de status

Solicita ao endpoint que envie o pacote de status(via FPORT 5), que contém o nível da bateria, modelo do sensor, sub banda, e banda de frequência usada.

Comando	Função
2601	Retorna pacote de status do endpoint

4. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

- 1. No site da Khomp, acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- **4**. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.
- **5**. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.
- 6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- 1. Acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- 3. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com , pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento n\u00e3o tem direito a prote\u00e7\u00e3o contra interfer\u00e9ncia prejudicial e n\u00e3o pode causar interfer\u00e9ncias em sistemas devidamente autorizados.
- Este equipamento n\u00e3o \u00e9 apropriado para uso em ambientes dom\u00e9sticos, pois poder\u00e1 causar interfer\u00e9ncias eletromagn\u00e9ticas que obrigam o usu\u00e1rio a tomar medidas para minimizar estas interfer\u00e9ncias.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

